Total No. of Questions : 8]

Roll No

ME-6003-CBGS

B.E. VI Semester

Examination, June 2020

Choice Based Grading System (CBGS) Heat and Mass Transfer

Time : Three Hours

Maximum Marks : 70

- *Note:* i) Attempt any five questions.
 - ii) All questions carry equal marks.
 - iii) Use of heat and mass transfer data book is permitted.

1. a) Define thermal resistance and conductance. 4

b) A Furnace wall comprises three layers: 13.5cm thick inside layer of fire brick, 7.5cm thick middle layer of insulating brick and 11.5cm thick outside layer of red brick. The outside operates at 870 °C and it is anticipated that the outside of this composite wall can be maintained at 40°C by the circulation of air. Assuming close bonding of ayers at their interfaces, find the rate of heat loss from one furnace. The wall measures 5m × 2m and thermal conductivities are as follows:

Fire Brick, $k_1 = 1.2 \text{ W/m-deg}$

- Insulating Brick, $k_{\rm s} = 0.14$ W/m-deg
- \checkmark Red Brick, k_i = 0.85 W/m-deg.
- 2. a) State Fourier's law and Stefan Boltzmann Law. 4
 - b) What are different modes of heat transfer? Explain with examples. 4
 - c) Establish analogy between flow of heat and electricity.

ME-6003-CBGS

PTO

Download all NOTES and PAPERS at StudentSuvidha.com

3.	a) b)	Define fin effectiveness and fin efficiency. 4 A steel rod (k = 30 W/m-deg) 1cm in diameter and 5cm long protrudes from a wall which is maintained at 100° The rod is insulated at its tip and is exposed to an environment with h = 50 W/m ² -deg and t _a = 30°C. Calculate the fin efficiency and temperature at the tip of fin. 10	C. 1
4.	a) b) c)	State the Buckingham pie theorem. 4 State principle and applications of dimensional analysis A horizontal heated plate at 200°C and facing upwards has been placed in still air at 20°C. If the plate measures 1.25m × 1m. Calculate the heat loss by natural convection The convective film coefficient for free convection is given by the following empirical relation: $h = 0.32$ (Θ) ^{0.25} W/m ² -k. Where Θ is mean film temperature in degree kelvin. 6	.4 5 on.
5.	a) b)	Give classification of heat exchangers.4Establish the expression for log mean temperaturedifference for a counter flow heat exchanger.10	
6.	a) b)	Explain Fick's law of diffusion and diffusion coefficien 6 Explain steady state diffusion through stationary predium. 8	t.
7.	a) b) c)	Explain Planck's distribution law.4Define emissive power, gray surface and black surface.Explain film wise and drop wise condensation.4	6
8.	Wr a) b) c) d) e)	ite short notes on any four of the following: 14 Regimes of boiling Free and Forced convection Radiation Shields Critical thickness of insulation Shape factor.	

ME-6003-CBGS

Download all NOTES and PAPERS at StudentSuvidha.com